Dr. Paulo Roberto de Paiva

Neurocirurgia - Neurologia - Cirurgia de Coluna

Fisiologia do envelhecimento

CRM-ES: 4424

 

AÇÚCAR (Glicose): A Assassina Silenciosa
Artigos




Por William Faloon  
  
Os efeitos fatais mesmo em níveis ligeiramente elevados de glicose são geralmente negligenciados. 

Uma das razões para essa calamidade é que os médicos continuam a confiar em parâmetros obsoletos de glicose no sangue. Estes médicos não reconhecem que qualquer excesso de glicose cria patologias metabólicas letais que são fatores subjacentes de múltiplas doenças relacionadas à idade. 

As pessoas hoje, portanto, sofrem e morrem de complicações diabéticas, sem saber que os seus níveis de açúcar no sangue (glicose) estão muito altos! 

A glicose é como a gasolina 
Nossa fonte primária de energia do organismo é a glicose. Todas as nossas células utilizam-na, e quando não há glicose suficiente disponível, o nosso corpo é desligado de forma similar que um motor do carro pára quando o tanque de gasolina está vazio. 

Quando a glicose é utilizada corretamente, nossas células produzem energia de forma eficiente. Como a sensibilidade celular à insulina diminui, o excesso de glicose se acumula na corrente sanguínea. Como a gasolina derramada, o excesso de glicose no sangue cria um ambiente altamente inflamável a partir do qual os incêndios oxidativos e inflamatório crônico entram em erupção. 

  O excesso de glicose não utilizada para produção de energia se converte em triglicerídeos que são armazenados como gordura corporal indesejada ou acumular no sangue, sempre que contribuam para a formação de placa aterosclerótica. 

Se você fosse abastecer o seu automóvel com gasolina e atingisse o tanque cheio, você não iria continuar a bombear mais combustível. No entanto, a maioria das pessoas continua a alimentar o seu corpo com excesso de energia (glicose) com pouca preocupação para com as conseqüências mortais. 

Com o envelhecimento humano, você enfrenta uma ofensiva diária do excesso de glicose que representa um risco maior para a sua segurança do que o transbordamento de gasolina. O excedente de glicose implacavelmente reage com as proteínas do seu corpo, provocando reações de glicação danosas enquanto alimenta o fogo da inflamação crônica e incita a produção gratuita de radical-livres destrutivos.

A definição da diabetes tipo 2 
Dicionários médicos definem o diabetes como uma condição na qual o corpo não é capaz de regular os níveis de glicose no sangue, resultando em excesso de glicose está presente no sangue. O debate é sobre qual o nível de glicose no sangue é considerado "muito alto". 

Quase quatro décadas atrás, se declarou enfaticamente que a glicemia de jejum deve estar abaixo de 100 (mg / dL). No entanto, desde 1979 a 1997, o estabelecimento médico ditou que um dos critérios para o diagnóstico de diabetes foi de leituras de glicose em jejum de 140 mg / dl ou superior em duas ocasiões distintas. 

O problema é que agora sabemos que o nível ideal de glicose em jejum são 70-85 mg / dL baseada em evidencia científica 33

Aqueles com glicose acima de 85 mg / dl têm maior risco de ataque do coração.34 Isto foi demonstrado em um estudo de quase 2.000 homens, onde os níveis de glicemia de jejum foram medidos durante um período de 22 anos. Os resultados surpreendentes mostrou que homens com glicemia de jejum acima de 85 (mg / dL) tiveram 40% maior risco de morte por doença cardiovascular. 

Os investigadores que realizaram este estudo afirmaram que "os valores de glicose no sangue em jejum na faixa superior da normalidade parece ser um importante preditor independente de morte cardiovascular em diabéticos, aparentemente saudáveis, os homens de meia-idade." 34 

De onde é que Glicemia se origina? 
A glicose se acumula no sangue principalmente de alimentos ricos em carboidratos que comemos. 

A ingestão de alimentos ricos em carboidratos é a principal fonte de glicose no sangue. Podemos controlar a glicose no sangue, reduzindo a ingestão de calorias, 23 ​​bloqueando a absorção de calorias, e / ou melhorando a capacidade de nossas células para utilizar eficientemente a glicose para produzir energia. 
  

 Qualquer "excesso" de Glicose é perigoso 
O Açúcar causa danos as  células através de vários mecanismos e é um fator causador de doenças comuns do envelhecimento.
  

É bem estabelecido que a redução da ingestão calórica reduz seu risco de doenças relacionadas à idade e retarda marcadores de envelhecimento. Um dos motivos pode ser a redução da glicose no sangue (e insulina) níveis que ocorre em resposta à ingestão de menos calorias. 

Em um estudo com 33.230 homens,  a glicose elevada foi independentemente associada com um aumento de 38% nas mortes por câncer do trato digestivo . Outros estudos mostram que os diabéticos têm ainda maior risco de câncer. 

Os diabéticos sofrem tais incidentes horríveis de distúrbios vasculares que alguns especialistas acreditam que a oclusão da artéria coronária e diabetes devem ser classificadas como a mesma doença. Em outras palavras, se você for diabético, você quase certamente vai sofrer de aterosclerose coronária. 

Em um recente estudo envolvendo 1.800 pessoas, as taxas de doença coronariana foram os mesmos durante um período de 10 anos em pré-diabéticos quando comparados àqueles com o diabetes. Os autores do estudo comentaram que a glicose de jejum era significativamente maior em comparação com o grupo de glicose normal, e concluiu: 

" Controle precoce da glicemia é essencial para a prevenção e controle de doenças coronárias." 
Enquanto nas pessoas mais idosas, os seus níveis de glicose em jejum geralmente aumenta à medida que diminui a sua saúde. 

Valores de referência padrão de laboratório permitem que um limite superior de glicemia de jejum de 99 mg / dL. No entanto, a mais eficaz terapia anti-envelhecimento, a restrição calórica diminui, glicemia de jejum para a 70-85 mg / dL. 

Estudos recentes indicam que manter os níveis de glicose em jejum na faixa de 70-85 mg / dL e não permitindo que os níveis de glicose após as refeições tenham aumento superior a 40 mg / dL em jejum em relação ao seu valor basal. Esta relação, influencia favoravelmente a longevidade dos nossos genes.72 

A lição para levar para casa é que se pode reduzir seus riscos de doenças relacionadas à idade e, possivelmente, retardar a sua taxa de envelhecimento, controlar rigorosamente os níveis de glicose no sangue. 

Perigos de picos de glicose após as refeições 
Quando após-refeição da glicose surge níveis acima de 140 mg / dL, o risco de aumento de praticamente todas as doenças degenerativas. 

Lembre-se que você deve se esforçar para glicemia de jejum não ficar superiore a 85 mg / dL (faixa ideal: 70-85 mg / dL). Em resposta a refeição, a sua leitura de glicose no sangue não deve aumentar mais de 40 mg / dL acima do seu valor em jejum. Isto significa que se sua glicose de jejum é de 80, sua glicose após as refeições, não deve ser superior a 120 mg / dL. 

Os perigos da glicose alta são tão fortemente evidentes que a Federação Internacional de Diabetes, alertou que os não-diabéticos com glicemia pós-prandial acima de 140 mg / dL (normalmente medido duas horas após uma refeição) são em risco para muitas doenças, incluindo:  

■ danos na retina do olho 
■ obstrução arterial 
■ O estresse oxidativo 
■ Aumento da inflamação 
■ A disfunção endotelial 
■ Redução do fluxo sangüíneo coronariano 
■ Maior risco de câncer 

Nutrientes que neutralizam as enzimas carbo-hidrato de degradação (como feijão-branco e marrom, extratos de algas marinhas) são de ajuda. A adição de fibras especiais (como propolmannan) pode diminuir a taxa de absorção de carboidratos no intestino delgado, o que também o embotamento pós-refeição de fluxo (pós-prandial) de glicose no sangue 

Porque a maioria pessoas de idade devem tomar metformina 
A metformina é uma droga aprovada para tratar o diabetes tipo 2. Também é muito eficaz para aqueles com alto risco de desenvolver diabetes devido a leituras elevados de açúcar no sangue. O Diabetes Prevention Program demonstraram que a metformina pode reduzir o risco de desenvolver diabetes em pacientes de alto risco por um gritante 31%, com maior benefício para aqueles com significativo aumento de peso. 

Metformina melhora a sensibilidade à insulina ,e inibe a liberação de glicogênio (forma de armazenamento de glicose) do fígado , reduzindo assim os níveis sanguíneos de glicose de jejum. 

Existem pesquisas mostrando que a metformina pode ter propriedades miméticas restrição calórica em ratos de laboratório. Capacidade única da droga para reduzir os níveis de insulina-glicose do sangue e seu baixo custo. 

A maioria de nós pré-diabético? 
Ao analisar milhares de resultados das análises de sangue e estudos científicos publicados, tenho chegado à conclusão de que mais de 75% das pessoas com idade acima de 40-50 sofrem de algum grau de disfunção pré-diabetica relacionadas infligida por açúcar no sangue elevado. 

Esses problemas podem silenciosamente evoluir como insuficiência renal, proliferação celular anormal, e disfunção endotelial ou de explodir como um ataque de coração e morte súbita. Jovens saudáveis ​​podem geralmente manter intervalos ideal de glicose, enquanto que os níveis de glicose aumentam à medida que envelhecemos. Os dados mostram que modestamente elevado "normal" de glicose aumenta risco de doença não pode ser ignorado. 

O envelhecimento normal predispõe a maioria de nós a complicações metabólicas, como resultado do metabolismo da glicose. Se não formos capazes de reconhecer este fato, estamos condenados a sofrer uma infinidade de doenças degenerativas que foram em grande parte evitáveis. 

A boa notícia é que há nutrientes, hormônios( Modulação) e drogas que pessoas saudáveis ​​podem tomar para conseguir ótimas leituras de glicose, ou pelo menos reduzir os níveis de açúcar no sangue a níveis mais seguros. A seção no final deste artigo fornece uma descrição concisa de passos simples que você pode tomar para reduzir seus níveis de glicose. 

Não seja uma vítima da ignorância do Médico  
Nós, frequentemente ouvimos clientes que dizem que seu médico não está preocupado que o seu nível de glicose em jejum se o seu nível é um pouco mais de 100 mg / dL. Não entre em pânico sobre esse tipo de leitura mais elevada é que eles estão tão acostumados a vê-la em indivíduos mais velhos. 

Como você acabou de aprender, no entanto, leituras de glicose acima de 85 mg / dL levam ao envelhecimento em seres humanos acentuando e elevando os riscos para doença cardiovascular. Você não tem que se tornar uma vítima do  apatia e ignorância médica. Há uma infinidade de passos que você pode tomar para diminuir a glicose a intervalos mais seguro. 

argaiv1920

References

1. Welin L, Eriksson H, Larsson B, et al. Triglycerides, a major coronary risk factor in elderly men. A study of men born in 1913. Eur Heart J. 1991 Jun;12(6):700-4.

2. Carlson LA, Bottiger LE, Ahfeldt PE. Risk factors for myocardial infarction in the Stockholmprospective study. A 14-year follow-up focusing on the role of plasma triglycerides and cholesterol. Acta Med Scand. 1979;206(5):351-60.

3. Jagla A, Schrezenmeir J. Postprandial triglycerides and endothelial function. Exp Clin Endocrinol Diabetes. 2001;109(4):S533-47.

4. Ebenbichler CF, Kirchmair R, Egger C, Patsch JR. Postprandial state and atherosclerosis. Curr Opin Lipidol. 1995 Oct;6(5):286-90.

5. Jacobson TA, Miller M, Schaefer EJ. Hypertriglyceridemia and cardiovascular risk reduction. Clin Ther. 2007 May;29(5):763-77.

6. Teno S, Uto Y, Nagashima H, et al. Association of postprandial hypertriglyceridemia and carotid intima-media thickness in patients with type 2 diabetes. Diabetes Care. 2000 Sep;23(9):1401-6.

7. Basta G, Schmidt AM, De Caterina R. Advanced glycation end products and vascular inflammation: implications for accelerated atherosclerosis in diabetes. Cardiovasc Res. 2004 Sep 1;63(4):582-92.

8. Uribarri J, Cai W, Sandu O, Peppa M, Goldberg T, Vlassara H. Diet-derived advanced glycation end products are major contributors to the body’s AGE pool and induce inflammation in healthy subjects. Ann N Y Acad Sci. 2005 Jun;1043:461-6.

9. Toma L, Stancu CS, Botez GM, Sima AV, Simionescu M. Irreversibly glycated LDL induce oxidative and inflammatory state in human endothelial cells; added effect of high glucose. Biochem Biophys Res Commun. 2009 Dec 18;390(3):877-82.

10. Bonnefont-Rousselot D. Glucose and reactive oxygen species. Curr Opin Clin Nutr Metab Care. 2002 Sep;5(5):561-8.

11. Esposito K, Nappo F, Marfella R, M et al. Inflammatory cytokine concentrations are acutely increased by hyperglycemia in humans: role of oxidative stress. Circulation. 2002 Oct 15; 106(16):2067-2072.

12. Marfella R, Quagliaro L, Nappo F, Ceriello A, Giugliano D. Acute hyperglycemia induces an oxidative stress in healthy subjects. J Clin Invest. 2001 Aug; 108(4):635-6.

13. Ceriello A. Hyperglycaemia: the bridge between non-enzymatic glycation and oxidative stress in the pathogenesis of diabetic complications. Diabetes Nutr Metab. 1999 Feb;12(1):42-6.

14. Hirsch IB, Brownlee M. Should minimal blood glucose variability become the gold standard of glycemic control? J Diabetes Complications. 2005 May-Jun;19(3):178-81.

15. Quagliaro L, Piconi L, Assaloni R, Martinelli L, Motz E, Ceriello A. Intermittent high glucose enhances apoptosis related to oxidative stress in human umbilical vein endothelial cells: the role of protein kinase C and NAD(P)H-oxidase activation. Diabetes. 2003 Nov;52(11):2795-804.

16. Ceriello A, Motz E. Is oxidative stress the pathogenic mechanism underlying insulin resistance, diabetes, and cardiovascular disease? The common soil hypothesis revisited. Arterioscler Thromb Vasc Biol. 2004 May;24(5):816-23.

17. Libby P, Ridker PM, Maseri A. Inflammation and atherosclerosis. Circulation. 2002 Mar 5;105(9):1135-43.

18. Bansilal S, Farkouh ME, Fuster V. Role of insulin resistance and hyperglycemia in the development of atherosclerosis. Am J Cardiol. 2007 Feb 19;99(4A):6B-14B.

19. Johnson RJ, Segal MS, Sautin Y, et al. Potential role of sugar (fructose) in the epidemic of hypertension, obesity and the metabolic syndrome, diabetes, kidney disease, and cardiovascular disease. Am J Clin Nutr. 2007 Oct;86(4):899-906.

20. Tzotzas T, Samara M, Constantinidis T, Tziomalos K, Krassas G. Short-term administration of orlistat reduced daytime triglyceridemia in obese women with the metabolic syndrome. Angiology. 2007 Feb-Mar;58(1):26-33.

21. Hanefeld M, Cagatay M, Petrowitsch T, Neuser D, Petzinna D, Rupp M. Acarbose reduces the risk for myocardial infarction in type 2 diabetic patients: meta-analysis of seven long-term studies. Eur Heart J. 2004 Jan;25(1):10-6.

22. Udani J, Hardy M, Madsen DC. Blocking carbohydrate absorption and weight loss: a clinical trial using Phase 2 brand proprietary fractionated white bean extract. Altern Med Rev. 2004 Mar;9(1):63-9.

23. Walford RL, Harris SB, Gunion MW. The calorically restricted low-fat nutrient-dense diet in Biosphere 2 significantly lowers blood glucose, total leukocyte count, cholesterol, and blood pressure in humans. Proc Natl Acad Sci U S A. 1992 Dec 1;89(23):11533-7.

24. Kemnitz JW, Roecker EB, Weindruch R, Elson DF, Baum ST, Bergman RN. Dietary restriction increases insulin sensitivity and lowers blood glucose in rhesus monkeys. Am. J Physiol. 1994 Apr;266(4, Pt. 1):E540-7.

25. Martins C, Morgan LM, Robertson MD. Effects of restrained eating behaviour on insulin sensitivity in normal-weight individuals. Physiol Behav. 2009 Mar 23;96(4-5):703-8.

26. Bischoff H. Pharmacology of alpha-glucosidase inhibition. Eur J Clin Invest. 1994 Aug;24 Suppl 3:3-10.

27. Kobayashi M, Ichitani M, Suzuki Y, et al. Black-tea polyphenols suppress postprandial hypertriacylglycerolemia by suppressing lymphatic transport of dietary fat in rats. J Agric Food Chem. 2009 Aug 12; 57(15):7131–6.

28. Juhel C, Armand M, Pafumi Y, Rosier C, Vandermander J, Lairon D. Green tea extract (AR25) inhibits lipolysis of triglycerides in gastric and duodenal medium in vitro. J Nutr Biochem. 2000 Jan;11(1):45-51.

29. Zhang J, Tiller C, Shen J, et al. Antidiabetic properties of polysaccharide- and polyphenolic-enriched fractions from the brown seaweed Ascophyllum nodosum. Can J Physiol Pharmacol. 2007 Nov;85(11):1116-23.

30. Ngondi JL, Etoundi BC, Nyangono CB, Mbofung CM, Oben JE. IGOB131, a novel seed extract of the West African plant Irvingia gabonensis, significantly reduces body weight and improves metabolic parameters in overweight humans in a randomized double-blind placebo controlled investigation. Lipids Health Dis. 2009 Mar 2;8:7.

31. Zeymer U. Cardiovascular benefits of acarbose in impaired glucose tolerance and type 2 diabetes. Int J Cardiol. 2006 Feb 8;107(1):11-20.

32. Osaki S, Kimura T, Sugimoto T, Hizukuri S, Iritani N. L-Arabinose feeding prevents increases due to dietary sucrose in lipogenic enzymes and triacylglycerol levels in rats. J Nutr. 2001;131:796-9.

33. McGlothin, P, Averill M. Glucose Control: The Sweet Spot in Longevity. The CR Way: Using the Secrets of Calorie Restriction for a Longer, Healthier Life. NY: HarperCollins; 2008:57-78.

34. Bjornholt JV, Erikssen G, Aaser E, et al. Fasting blood glucose: an underestimated risk factor for cardiovascular death. Results from a 22-year follow-up of healthy nondiabetic men. Diabetes Care. 1999 Jan;22(1):45-9.

35. Rossetti L, Giaccari A, DeFronzo RA. Glucose toxicity. Diabetes Care. 1990 Jun; 13:610-30.

36. Vlassara H. Advanced glycation end-products and atherosclerosis. Ann Med. 1996 Oct;28(5):419-26.

37. Stattin P, Björ O, Ferrari P, et al. Prospective study of hyperglycemia and cancer risk. Diabetes Care. 2007 Mar;30(3):561-7.

38. Levi B, Werman MJ. Long-term fructose consumption accelerates glycation and several age-related variables in male rats. J Nutr. 1998 Sep;128(9):1442-9.

39. Makino H, Shikata K, Kushiro M, et al. Roles of advanced glycation end-products in the progression of diabetic nephropathy. Nephrol Dial Transplant. 1996;11 Suppl 5:76-80.

40. Kimura C, Oike M, Koyama T, Ito Y. Impairment of endothelial nitric oxide production by acute glucose overload. Am J Physiol Endocrinol Metab. 2001 Jan;280(1):E171-8.

41. Winocour PD. Decreased platelet membrane fluidity due to glycation or acetylation of membrane proteins. Thromb Haemost. 1992 Nov 10;68(5):577-82.

42. Ziyadeh FN. Mediators of hyperglycemia and the pathogenesis of matrix accumulation in diabetic renal disease. Miner Electrolyte Metab. 1995;21(4-5):292-302.

43. Kikuchi S, Shinpo K, Takeuchi M, et al. Glycation—a sweet tempter for neuronal death. Brain Res Brain Res Rev. 2003 Mar;41(2-3):306-23.

44. El-Assaad W, Buteau J, Peyot ML, et al. Saturated fatty acids synergize with elevated glucose to cause pancreatic beta-cell death. Endocrinology. 2003 Sep;144(9):4154-63.

45. Maedler K, Spinas GA, Lehmann R, et al. Glucose induces beta-cell apoptosis via upregulation of the Fas receptor in human islets. Diabetes. 2001 Aug;50(8): 1683-90.

46. Agardh E, Hultberg B, Agardh C. Effects of inhibition of glycation and oxidative stress on the development of cataract and retinal vessel abnormalities in diabetic rats. Curr Eye Res. 2000 Jul;21(1):543-9.

47. Morohoshi M, Fujisawa K, Uchimura I, Numano F. The effect of glucose and advanced glycosylation end products on IL-6 production by human monocytes. Ann N Y Acad Sci. 1995 Jan 17;748:562-70.

48. Kaneto H, Fujii J, Suzuki K, et al. DNA cleavage induced by glycation of Cu,Zn-superoxide dismutase. Biochem J. 1994 Nov 15;304 (Pt 1):219-25.

49. Available at: http://apjcn.nhri.org.tw/server/APJCN/ProcNutSoc/2000+/2004/65.pdf. Accessed August 23, 2010.

50. Ceriello A. Impaired glucose tolerance and cardiovascular disease: the possible role of post-prandial hyperglycemia. Am Heart J. 2004 May;147(5):803-7.

51. Alderman JM, Flurkey K, Brooks NL, et al. Neuroendocrine inhibition of glucose production and resistance to cancer in dwarf mice. Exp Gerontol. 2009 Jan-Feb;44(1-2):26-33.

52. Chan JM, Wang F, Holly EA. Sweets, sweetened beverages, and risk of pancreatic cancer in a large population-based case-control study. Cancer Causes Control. 2009 Aug;20(6):835-46.

53. Bluher M, Kahn BB, Kahn CR. Extended longevity in mice lacking the insulin receptor in adipose tissue. Science. 2003 Jan 24;299(5606):572-4.

54. Lane MA, Ingram DK, Roth GS. Calorie restriction in nonhuman primates: effects on diabetes and cardiovascular risk. Toxicol Sci. 1999 Dec;52(2 Suppl.):41-8.

55. Ugochukwu NH, Figgers CL. Modulation of the flux patterns in carbohydrate metabolism in the livers of streptozoticin-induced diabetic rats by dietary caloric restriction. Pharmacol Res. 2006 Sep;54(3):172-80.

56. Lefevre M, Redman LM, Heilbronn LK, et al. Caloric restriction alone and with exercise improves CVD risk in healthy non-obese individuals. Atherosclerosis. 2009 Mar;203(1):206-13.

57. Kritchevsky D. Caloric restriction and cancer. J Nutr Sci Vitaminol. 2001 Feb; 47(1):13-9.

58. Weindruch R. Effect of caloric restriction on age-associated cancers. Exp Gerontol. 1992 Sep-Dec;27(5-6):575-81.

59. Colman RJ, Anderson RM, Johnson SC, et al. Caloric restriction delays disease onset and mortality in rhesus monkeys. Science. 2009 Jul 10;325(5937):201-4.

60. Weindruch R, Walford RL, Fligiel S, Guthrie D. The retardation of aging in mice by dietary restriction: longevity, cancer, immunity and lifetime energy intake. J Nutr. 1986 Apr;116(4):641-54.

61. Hsieh EA, Chai CM, Hellerstein MK. Effects of caloric restriction on cell proliferation in several tissues in mice: role of intermittent feeding. Am J Physiol Endocrinol Metab. 2005 May;288(5):E965-72.

62. Mukherjee P, El-Abbadi MM, Kasperzyk JL, Ranes MK, Seyfried TN. Dietary restriction reduces angiogenesis and growth in an orthotopic mouse brain tumour model. Br J Cancer. 2002 May 20;86(10):1615-21.

63. Matthews CE, Sui X, LaMonte MJ, Adams SA, Hébert JR, Blair SN. Metabolic syndrome and risk of death from cancers of the digestive system. Metabolism. 2010 Aug;59(8):1231-9.

64. Noto H, Osame K, Sasazuki T, Noda M. Substantially increased risk of cancer in patients with diabetes mellitus A systematic review and meta-analysis of epidemiologic evidence in Japan. J Diabetes Complications. 2010 Sept-Oct;24(5):345-53.

65. Flood A, Strayer L, Schairer C, Schatzkin A. Diabetes and risk of incident colorectal cancer in a prospective cohort of women. Cancer Causes Control. 2010 Aug;21(8):1277-84.

66. Michaud DS, Fuchs CS, Liu S, Willett WC, Colditz GA, Giovannucci E. Dietary glycemic load, carbohydrate, sugar, and colorectal cancer risk in men and women. Cancer Epidemiol Biomarkers Prev. 2005;14(1):138-47.

67. Lajous M, Willett W, Lazcano-Ponce E, Sanchez-Zamorano LM, Hernandez-Avila M, Romieu I. Glycemic load, glycemic index, and the risk of breast cancer among Mexican women. Cancer Causes Control. 2005;16(10):1165-9.

68. Huxley R, Ansary-Moghaddam A, Berrington de Gonzalez A, Barzi F, Woodward M. Type-II diabetes and pancreatic cancer: a meta-analysis of 36 studies. Br J Cancer. 2005;92(11):2076–83.

69. Chari ST, Leibson CL, Rabe KG, et al. Pancreatic cancer-associated diabetes mellitus: prevalence and temporal association with diagnosis of cancer. Gastroenterology. 2008 Jan;134(1):95-101.

70. Gapstur SM, Gann PH, Lowe W, Liu K, Colangelo L, Dyer A. Abnormal glucose metabolism and pancreatic cancer mortality. JAMA. 2000 May 17;283(19):2552-8.

71. Li Q, Chen AH, Song XD, et al. Analysis of glucose levels and the risk for coronary heart disease in elderly patients in Guangzhou Haizhu district. Nan Fang Yi Ke Da Xue Xue Bao. 2010 Jun;30(6):1275-8.

72. Available at: http://www.livingthecrway.com/home/blog/09-07-20/High_Glucose_after_Meals_is_a_Risk_Factor.aspx. Accessed August 2, 2010.

73. Available at: http://www.idf.org/webdata/docs/Guideline_PMG_final.pdf. Accessed July 29, 2010.

74. Tormo MA, Gil-Exojo I, Romero de Tejada A, Campillo JE. White bean amylase inhibitor administered orally reduces glycaemia in type 2 diabetic rats. Br J Nutr. 2006 Sep;96(3):539-44.

75. Henness S, Perry CM. Orlistat: a review of its use in the management of obesity. Drugs. 2006;66(12):1625-56.

76. Oyama T, Saiki A, Endoh K, et al. Effect of acarbose, an alpha-glucosidase inhibitor, on serum lipoprotein lipase mass levels and common carotid artery intima-media thickness in type 2 diabetes mellitus treated by sulfonylurea. J Atheroscler Thromb. 2008 Jun;15(3):154-9.

77. Lamela M, Anca J, Villar R, Otero J, Calleja JM. Hypoglycemic activity of several seaweed extracts. J Ethnopharmacol. 1989 Nov;27(1-2):35-43.

78. Seri K, Sanai K, Matsuo N, Kawakubo K, Xue C, Inoue S. L-arabinose selectively inhibits intestinal sucrase in an uncompetitive manner and suppresses glycemic response after sucrose ingestion in animals. Metabolism. 1996 Nov;45(11):1368-74.

79. Preuss HG, Echard B, Bagchi D, Stohs S. Inhibition by natural dietary substances of gastrointestinal absorption of starch and sucrose in rats and pigs: 1. Acute studies. Int J Med Sci. 2007 Aug 6;4(4):196-202.

80. McCarty MF. Glucomannan minimizes the postprandial insulin surge: a potential adjuvant for hepatothermic therapy. Med Hypotheses. 2002 Jun;58(6):487-90.

81. Vuksan V, Jenkins DJ, Spadafora P, et al. Konjac-mannan (glucomannan) improves glycemia and other associated risk factors for coronary heart disease in type 2 diabetes. A randomized controlled metabolic trial. Diabetes Care. 1999 Jun;22(6):913-9.

82. Biorklund M, van Rees A, Mensink RP, Onning G. Changes in serum lipids and postprandial glucose and insulin concentrations after consumption of beverages with beta-glucans from oats or barley: a randomised dose-controlled trial. Eur J Clin Nutr. 2005 Nov;59(11):1272-81.

83. Poppitt SD, van Drunen JD, McGill AT, Mulvey TB, Leahy FE. Supplementation of a high-carbohydrate breakfast with barley beta-glucan improves postprandial glycaemic response for meals but not beverages. Asia Pac J Clin Nutr. 2007; 16(1):16-24.

84. Balk EM, Tatsioni A, Lichtenstein AH, Lau J, Pittas AG. Effect of chromium supplementation on glucose metabolism and lipids: a systematic review of randomized controlled trials. Diabetes Care. 2007 Aug;30(8):2154-63.

85. Obiro WC, Zhang T, Jiang B. The nutraceutical role of the Phaseolus vulgaris alpha-amylase inhibitor. Br J Nutr. 2008 Jul;100(1):1-12

86. Sood N, Baker WL, Coleman CI. Effect of glucomannan on plasma lipid and glucose concentrations, body weight, and blood pressure: systematic review and meta-analysis. Am J Clin Nutr. 2008 Oct;88(4):1167-75.

87. Heilbronn LK, Noakes M, Clifton PM. The effect of high- and low-glycemic index energy restricted diets on plasma lipid and glucose profiles in type 2 diabetic subjects with varying glycemic control. J Am Coll Nutr. 2002 Apr;21(2):120-7.

88. Walsh DE, Yaghoubian V, Behforooz A. Effect of glucomannan on obese patients: a clinical study. Int J Obes. 1984; 8(4):289-93.

89. Wu H, Dwyer KM, Fan Z, et al. Dietary fiber and progression of atherosclerosis: the Los Angeles Atherosclerosis Study. Am J Clin Nutr. 2003 Dec;78(6):1085-91.

90. Available at: http://www.lef.org/Vitamins-Supplements/Item01492/Optimized-Irvingia-with-Phase-3-Calorie-Control-Complex.html. Accessed August 2, 2010.

91. Moon RJ. The addition of metformin in type 1 diabetes improves insulin sensitivity, diabetic control, body composition and patient well-being. Diabetes Obes Metab. 2007 Jan;9(1):143-5.

92. Sir T, Castillo T, Munoz S, Lopez G, Calvillan M. Effects of metformin on insulin resistance in obese and hyperandrogenic women. Rev Med Chil.1997 Dec;125(12):1457-63.

93. Giugliano D, De Rosa N, Di Maro G, et al. Metformin improves glucose, lipid metabolism, and reduces blood pressure in hypertensive, obese women. Diabetes Care. 1993 Oct;16(10):1387-90.

94. Zander M, Taskiran M, Toft-Nielsen MB, Madsbad S, Holst JJ. Additive glucose-lowering effects of glucagon-like peptide-1 and metformin in type 2 diabetes. Diabetes Care. 2001 Apr;24(4):720-5.

95. Saenz A, Fernandez-Esteban I, Mataix A, Ausejo M, Roque M, Moher D. Metformin monotherapy for type 2 diabetes mellitus. Cochrane Database Syst Rev. 2005 Jul 20;(3).

96. Wiernsperger NF, Bailey CJ. The antihyperglycaemic effect of metformin: therapeutic and cellular mechanisms. Drugs. 1999; 58 Suppl 1:31-9.

97. Mithieux G, Guignot L, Bordet JC, Wiernsperger N. Intrahepatic mechanisms underlying the effect of metformin in decreasing basal glucose production in rats fed a high-fat diet. Diabetes. 2002 Jan;51(1):139-43.

98. Davidson MB, Peters AL. An overview of metformin in the treatment of type 2 diabetes mellitus. Am J Med. 1997 Jan;102(1):99-110.

99. Fioretto P, Bruseghin M, Berto I, Gallina P, Manzato E, Mussap M. Renal protection in diabetes: role of glycemic control. J Am Soc Nephrol. 2006 Apr;17(4 Suppl 2):S86-9.

100.Bilous R. Microvascular disease: what does the UKPDS tell us about diabetic nephropathy? Diabet Med. 2008 Aug;25 Suppl 2:25-9.

101.Stocks T, Rapp K, Bjørge T, et al. Blood glucose and risk of incident and fatal cancer in the metabolic syndrome and cancer project (me-can): analysis of six prospective cohorts. PLoS Med. 2009 Dec;6(12):e1000201.

102.Cowey S, Hardy RW. The metabolic syndrome: A high-risk state for cancer? Am J Pathol. 2006 Nov;169(5):1505-22.

103.Jee SH, Ohrr H, Sull JW, Yun JE, Ji M, Samet JM. Fasting serum glucose level and cancer risk in Korean men and women. JAMA. 2005 Jan 12;293(2):194-202.

104.Wu L, Derynck R. Essential role of TGF-beta signaling in glucose-induced cell hypertrophy. Dev Cell. 2009 Jul;17(1):35-48.

105.Kabat GC, Kim M, Chlebowski RT, et al. A longitudinal study of the metabolic syndrome and risk of postmenopausal breast cancer. Cancer Epidemiol Biomarkers Prev. 2009 Jul;18(7):2046-53.

106.Pannala R, Basu A, Petersen GM, Chari ST. New-onset diabetes: a potential clue to the early diagnosis of pancreatic cancer. Lancet Oncol. 2009 Jan;10(1):88-95.

107.Cust AE, Kaaks R, Friedenreich C, et al. Metabolic syndrome, plasma lipid, lipoprotein and glucose levels, and endometrial cancer risk in the European Prospective Investigation into Cancer and Nutrition (EPIC). Endocr Relat Cancer. 2007 Sep;14(3):755-67.

108.Jones SC, Saunders HJ, Qi W, Pollock CA. Intermittent high glucose enhances cell growth and collagen synthesis in cultured human tubulointerstitial cells. Diabetologia. 1999 Sep;42(9):1113-9.

109.Ceriello A, Quagliaro L, Piconi L, et al. Effect of postprandial hypertriglyceridemia and hyperglycemia on circulating adhesion molecules and oxidative stress generation and the possible role of simvastatin treatment. Diabetes. 2004 Mar;53(3):701-10.

110.Esper RJ, Vilariño JO, Machado RA, Paragano A. Endothelial dysfunction in normal and abnormal glucose metabolism. Adv Cardiol. 2008; 45:17-43.

111.Rodriguez CJ, Miyake Y, Grahame-Clarke C, et al. Relation of plasma glucose and endothelial function in a population-based multiethnic sample of subjects without diabetes mellitus. Am J Cardiol. 2005 Nov 1;96(9):1273-7.

112.Williams SB, Goldfine AB, Timimi FK, et al. Acute hyperglycemia attenuates endothelium-dependent vasodilation in humans in vivo. Circulation. 1998 May 5;97(17):1695-701.

113.Kawano H, Motoyama T, Hirashima O, et al. Hyperglycemia rapidly suppresses flow-mediated endothelium-dependent vasodilation of brachial artery. J Am Coll Cardiol. 1999 Jul; 34(1):146-54.

114.Nappo F, Esposito K, Cioffi M, et al. Postprandial endothelial activation in healthy subjects and in type 2 diabetic patients: role of fat and carbohydrate meals. J Am Coll Cardiol. 2002 Apr 3;39(7):1145-50.

115.Hink U, Tsilimingas N, Wendt M, Munzel T. Mechanisms underlying endothelial dysfunction in diabetes mellitus: therapeutic implications. Treat Endocrinol. 2003;2(5):293-304.

116.Lteif AA, Han K, Mather KJ. Obesity, insulin resistance, and the metabolic syndrome: determinants of endothelial dysfunction in whites and blacks. Circulation. 2005 Jul 5;112(1):32-8.

117.Panus C, Mota M, Vladu D, Vanghelie L, Raducanu CL. The endothelial dysfunction in diabetes mellitus. Rom J Intern Med. 2003; 41(1):27-33.

118.Dziewierz A, Giszterowicz D, Siudak Z, Rakowski T, Dubiel JS, Dudek D. Admission glucose level and in-hospital outcomes in diabetic and non-diabetic patients with acute myocardial infarction. Clin Res Cardiol. 2010 May 11.

119.Selvin E, Coresh J, Golden SH, Brancati FL, Folsom AR, Steffes MW. Glycemic control and coronary heart disease risk in persons with and without diabetes: the atherosclerosis risk in communities study. Arch Intern Med. 2005 Sep 12;165(16):1910-6.

120.de Vegt F, Dekker JM, Ruhé HG, et al. Hyperglycaemia is associated with all-cause and cardiovascular mortality in the Hoorn population: the Hoorn Study. Diabetologia. 1999 Aug;42(8):926-31.

121.Ceriello A. The postprandial state and cardiovascular disease: relevance to diabetes mellitus. Diabetes Metab Res Rev. 2000 Mar-Apr;16(2):125-32.

122.Liu S, Willett WC, Stampfer MJ, et al. A prospective study of dietary glycemic load, carbohydrate intake, and risk of coronary heart disease in US women. Am J Clin Nutr. 2000 Jun; 71(6):1455-61.

123.Zavaroni I, Bonora E, Pagliara M, et al. Risk factors for coronary artery disease in healthy persons with hyperinsulinemia and normal glucose tolerance. N Engl J Med. 1989 Mar 16;320(11):702-6.

124.Levitan EB, Song Y, Ford ES, Liu S. Is nondiabetic hyperglycemia a risk factor for cardiovascular disease? A meta-analysis of prospective studies. Arch Intern Med. 2004 Oct 25;164(19):2147-55.

125.Sorkin JD, Muller DC, Fleg JL, Andres R. The relation of fasting and 2-h postchallenge plasma glucose concentrations to mortality: data from the Baltimore Longitudinal Study of Aging with a critical review of the literature. Diabetes Care. 2005 Nov; 28(11):2626-32.

126.Held C, Gerstein HC, Yusuf S, et al. Glucose levels predict hospitalization for congestive heart failure in patients at high cardiovascular risk. Circulation. 2007 Mar 20;115(11):1371-5.

127.Coutinho M, Gerstein HC, Wang Y, Yusuf S. The relationship between glucose and incident cardiovascular events. A metaregression analysis of published data from 20 studies of 95,783 individuals followed for 12.4 years. Diabetes Care. 1999 Feb;22(2):233-40.

128.Lucas CP, Boldrin MN, Reaven GM. Effect of orlistat added to diet (30% of calories from fat) on plasma lipids, glucose, and insulin in obese patients with hypercholesterolemia. Am J Cardiol. 2003 Apr 15;91(8):961-4.

129.Behall KM, Scholfield DJ, Hallfrisch JG, Liljeberg-Elmståhl HG. Consumption of both resistant starch and beta-glucan improves postprandial plasma glucose and insulin in women. Diabetes Care. 2006 May;29(5):976-81.

130.Nizami F, Farooqui MS, Munir SM, Rizvi TJ. Effect of fiber bread on themanagement of diabetes mellitus. J Coll Physicians Surg Pak. 2004 Nov;14(11):673-6.

131.Ngondi JL, Oben JE, Minka SR. The effect of Irvingia gabonensis seeds on body weight and blood lipids of obese subjects in Cameroon. Lipids Health Dis. 2005 May 25;4:12.

132.Anderson JW, Allgood LD, Turner J, Oeltgen PR, Daggy BP. Effects of psyllium on glucose and serum lipid responses in men with type 2 diabetes and hypercholesterolemia. Am J Clin Nutr. 1999 Oct;70(4):466-73.

133.Chandalia M, Garg A, Lutjohann D, von Bergmann K, Grundy SM, Brinkley LJ. Beneficial effects of high dietary fiber intake in patients with type 2 diabetes mellitus. N Engl J Med. 2000 May 11;342(19):1392-8.

134.Smith U, Holm G. Effect of a modified guar gum preparation on glucose and lipid levels in diabetics and healthy volunteers. Atherosclerosis. 1982 Oct;45(1):1-10.

135.Borges RL, Ribeiro-Filho FF, Carvalho KM, Zanella MT. Impact of weight loss on adipocytokines, C-reactive protein and insulin sensitivity in hypertensive women with central obesity. Arq Bras Cardiol. 2007 Dec;89(6):409-14.

136.Vasdev S, Gill V, Singal P. Role of advanced glycation end products in hypertension and atherosclerosis: therapeutic implications. Cell Biochem Biophys. 2007;49(1):48-63.

137.Available at: http://www.bmj.com/cgi/reprint/330/7503/1304. Accessed August 10, 2010.

138.Patel R, Krishnan R, Ramchandani A, Maru G. Polymeric black tea polyphenols inhibit mouse skin chemical carcinogenesis by decreasing cell proliferation. Cell Prolif. 2008 Jun;41(3):532-53.

139.Letchoumy PV, Mohan KV, Prathiba D, Hara Y, Nagini S. Comparative evaluation of antiproliferative, antiangiogenic and apoptosis inducing potential of black tea polyphenols in the hamster buccal pouch carcinogenesis model. J Carcinog. 2007 Dec 3;6:19.

140.Prasad S, Kaur J, Roy P, Kalra N, Shukla Y. Theaflavins induce G2/M arrest by modulating expression of p21waf1/cip1, cdc25C and cyclin B in human prostate carcinoma PC-3 cells. Life Sci. 2007 Oct 13;81(17-18):1323-31.

141.Shoji Y, Nakashima H. Glucose-lowering effect of powder formulation of African black tea extract in KK-A(y)/TaJcl diabetic mouse. Arch Pharm Res. 2006 Sep;29(9):786-94.

142.Whitmer RA, Karter AJ, Yaffe K, Quesenberry CP Jr, Selby JV. Hypoglycemic episodes and risk of dementia in older patients with type 2 diabetes mellitus. JAMA. 2009 Apr 15;301(15):1565-72.

143.Yaffe K, Blackwell T, Whitmer RA, Krueger K, Barrett Connor E. Glycosylated hemoglobin level and development of mild cognitive impairment or dementia in older women. J Nutr Health Aging. 2006 Jul-Aug;10(4):293-5.

144.Xu W, Qiu C, Winblad B, Fratiglioni L. The effect of borderline diabetes on the risk of dementia and Alzheimer’s disease. Diabetes. 2007 Jan;56(1):211-6.

145.Ott A, Stolk RP, van HF, et al. Diabetes mellitus and the risk of dementia: The Rotterdam Study. Neurology. 1999 Dec 10;53(9):1937-42.

146.Abbatecola AM, Rizzo MR, Barbieri M, et al. Postprandial plasma glucose excursions and cognitive functioning in aged type 2 diabetics. Neurology. 2006; 67(2):235-40.

147.Gonzalez Canga A, Fernández Martínez N, Sahagún AM, et al. Glucomannan: properties and therapeutic applications. Nutr Hosp. 2004 Jan-Feb;19(1):45-50.

148.Celleno L, Tolaini MV, D’Amore A, Perricone NV, Preuss HG. A Dietary supplement containing standardized Phaseolus vulgaris extract influences body composition of overweight men and women. Int J Med Sci. 2007 Jan 24;4(1):45-52.

149.Oben JE, Ngondi JL, Momo CN, Agbor GA, Sobgui CS. The use of a Cissus quadrangularis/Irvingia gabonensis combination in the management of weight loss: a double-blind placebo-controlled study. Lipids Health Dis. 2008 Mar 31;7:12.

150.Oben JE, Ngondi JL, Blum K. Inhibition of Irvingia gabonensis seed extract (OB131) on adipogenesis as mediated via down regulation of the PPARgamma and leptin genes and up-regulation of the adiponectin gene. Lipids Health Dis. 2008 Nov 13;7:44.

151.Bose M, Lambert JD, Ju J, Reuhl KR, Shapses SA, Yang CS. The major green tea polyphenol, (-)-epigallocatechin-3-gallate, inhibits obesity, metabolic syndrome, and fatty liver disease in high-fat-fed mice. J Nutr. 2008 Sep;138(9):1677-83.

152.Iwai K. Antidiabetic and antioxidant effects of polyphenols in brown alga Ecklonia stolonifera in genetically diabetic KK-A(y) mice. Plant Foods Hum Nutr. 2008 Dec;63(4):163-9.

153.Available at: http://www.naturalproductsinsider.com/news/2009/12/insea2-reduces-glycemic-response.aspx#. Accessed August 12, 2010.

154.Hlebowicz J, Darwiche G, Bjorgell O, Almer LO. Effect of cinnamon on postprandial blood glucose, gastric emptying, and satiety in healthy subjects. Am J Clin Nutr. 2007 Jun;85(6):1552-6.

155.Qin B, Nagasaki M, Ren M, Bajotto G, Oshida Y, Sato Y. Cinnamon extract prevents the insulin resistance induced by a high-fructose diet. Horm Metab Res. 2004 Feb;36(2):119-25.

156.Khan A, Safdar M, Muzaffar Ali Khan M, Nawak Khattak K, Anderson RA. Cinnamon improves glucose and lipids of people with type 2 diabetes. Diabetes Care. 2003 Dec;26(12):3215-8.

157.Broadhurst CL, Polansky MM, Anderson RA. Insulin-like biological activity of culinary and medicinal plant aqueous extracts in vitro. J Agric Food Chem. 2000 Mar;48(3):849-52.

158.Anisimov VN, Berstein LM, Egormin PA, et al. Metformin slows down aging and extends life span of female SHR mice. Cell Cycle. 2008 Sep 1;7(17):2769-73.

159.Onken B, Driscoll M. Metformin induces a dietary restriction-like state and the oxidative stress response to extend C. elegans Healthspan via AMPK, LKB1, and SKN-1. PLoS One. 2010 Jan 18;5(1):e8758.

160.Fontbonne A., Charles MA, Juhan-Vague I, et al. The effect of metformin on the metabolic abnormalities associated with upper body fat distribution. Results of the BIGPRO 1 trial. Diabetes Care. 1996 Sept; 19:920-6.

161.Guthrie R. Treatment of non-insulin-dependent diabetes mellitus with metformin. J Am Board Fam Pract. 1997 May-Jun;10(3):213-21.

162.Paolisso G, Amato L, Eccellente R, et al. Effect of metformin on food intake in obese subjects. Eur J Clin Invest. 1998 Jun;28(6):441-6.

163.Emral R, Koseoglulari O, Tonyukuk V, Uysal AR, Kamel N, Corapcioglu D. The effect of short-term glycemic regulation with gliclazide and metformin on postprandial lipemia. Exp Clin Endocrinol Diabetes. 2005 Feb;113(2):80-4.

164.Nordestgaard BG, Benn M, Schnohr P, Tybjaerg-Hansen A. Nonfasting triglycerides and risk of myocardial infarction, ischemic heart disease, and death in men and women. JAMA. 2007 Jul 18;298(3):299-308.

165.Hollenbeck CB, Johnston P, Varasteh BB, Chen YD, Reaven GM. Effects of metformin on glucose, insulin and lipid metabolism in patients with mild hypertriglyceridaemia and non-insulin dependent diabetes by glucose tolerance test criteria. Diabete Metab. 1991 Sep-Oct;17(5):483-9.

166.Wilcock C, Bailey CJ. Reconsideration of inhibitory effect of metformin on intestinal glucose absorption. J Pharm Pharmacol. 1991 Feb;43(2):120-1.

167.Ikeda T, Iwata K, Murakami H. Inhibitory effect of metformin on intestinal glucose absorption in the perfused rat intestine. Biochem Pharmacol. 2000 Apr 1;59(7):887-90.

168.Lee A, Morley JE. Metformin decreases food consumption and induces weight loss in subjects with obesity with type II non-insulin-dependent diabetes. Obes Res. 1998 Jan;6(1):47-53.

169.Mannucci E, Ognibene A, Cremasco F, et al. Effect of metformin on glucagon-like peptide 1 (GLP-1) and leptin levels in obese nondiabetic subjects. Diabetes Care. 2001 Mar;24(3):489-94.

170.Hundal RS, Krssak M, Dufour S, et al. Mechanism by which metformin reduces glucose production in type 2 diabetes. Diabetes. 2000 Dec;49(12):2063-9.

171.Otto M, Breinholt J, Westergaard N. Metformin inhibits glycogen synthesis and gluconeogenesis in cultured rat hepatocytes. Diabetes Obes Metab. 2003 May;5(3):189-94.

172.Carlsen SM, Følling I, Grill V, Bjerve KS, Schneede J, Refsum H. Metformin increases total serum homocysteine levels in non-diabetic male patients with coronary heart disease. Scand J Clin Lab Invest. 1997 Oct;57(6):521-7.

173.Dhatariya K, Bigelow ML, Nair KS. Effect of dehydroepiandrosterone replacement on insulin sensitivity and lipids in hypoadrenal women. Diabetes. 2005 Mar;54(3):765-9.

174.Villareal DT, Holloszy JO. Effect of DHEA on abdominal fat and insulin action in elderly women and men: a randomized controlled trial. JAMA. 2004 Nov 10;292(18):2243-8.

175.Boudou P, Sobngwi E, Ibrahim F, et al. Hyperglycaemia acutely decreases circulating dehydroepiandrosterone levels in healthy men. Clin Endocrinol (Oxf). 2006 Jan;64(1):46-52.

176. Diamond P, Cusan L, Gomez JL, Bélanger A, Labrie F. Metabolic effects of 12-month percutaneous dehydroepiandrosterone replacement therapy in postmenopausal women. J Endocrinol. 1996 Sep;150 Suppl:S43-50.

177.Yamashita R, Saito T, Satoh S, Aoki K, Kaburagi Y, Sekihara H. Effects of dehydroepiandrosterone on gluconeogenic enzymes and glucose uptake in human hepatoma cell line, HepG2. Endocr J. 2005 Dec;52(6):727-33.

178. Kapoor D, Malkin CJ, Channer KS, Jones TH. Androgens, insulin resistance and vascular disease in men. Clin Endocrinol (Oxf). 2005 Sep;63(3):239-50.

179.Faloon W. Physician’s guide: Using blood tests to safely induce weight loss. Life Extension Magazine. 2009 Jun;15(6):42-63.

180.Bain J. The many faces of testosterone. Clin Interv Aging. 2007; 2(4):567-76.

181.Kupelian V, Page ST, Araujo AB, Travison TG, Bremner WJ, McKinlay JB. Low sex hormone-binding globulin, total testosterone, and symptomatic androgen deficiency are associated with development of the metabolic syndrome in nonobese men. J Clin Endocrinol Metab. 2006 Mar;91(3):843-50.

182.Traish AM, Saad F, Guay AT. The dark side of testosterone deficiency: II. Type 2 diabetes and insulin resistance. J Androl. 2009 Jan-Feb;30(1):23-32.

183.Paniagua JA, de la Sacristana AG, Sánchez E, et al. A MUFA-rich diet improves posprandial glucose, lipid and GLP-1 responses in insulin-resistant subjects. J Am Coll Nutr. 2007 Oct;26(5):434-44.

184.Tzima N, Pitsavos C, Panagiotakos DB, et al. Mediterranean diet and insulin sensitivity, lipid profile and blood pressure levels, in overweight and obese people; the Attica study. Lipids Health Dis. 2007 Sep 19;6:22.

185.Chrysohoou C, Panagiotakos DB, Pitsavos C, Das UN, Stefanadis C. Adherence to the Mediterranean diet attenuates inflammation and coagulation process in healthy adults: The ATTICA Study. J Am Coll Cardiol. 2004 Jul 7;44(1):152-8.

186.Gaby AR. Adverse effects of dietary fructose. Altern Med Rev. 2005 Dec;10(4):294-306.

187.Hallfrisch J, Ellwood KC, Michaelis OE 4th, Reiser S, O’Dorisio TM, Prather ES. Effects of dietary fructose on plasma glucose and hormone responses in normal and hyperinsulinemic men. J Nutr. 1983 Sep;113(9):1819-26.

188.Tokita Y, Hirayama Y, Sekikawa A, et al. Fructose ingestion enhances atherosclerosis and deposition of advanced glycated end-products in cholesterol-fed rabbits. J Atheroscler Thromb. 2005 12(5):260-7.

189.Beck-Nielsen H, Pedersen O, Lindskov HO. Impaired cellular insulin binding and insulin sensitivity induced by high-fructose feeding in normal subjects. Am J Clin Nutr. 1980 Feb;33(2):273-8.

190.McPherson JD, Shilton BH, Walton DJ. Role of fructose in glycation and cross-linking of proteins. Biochemistry. 1988 Mar 22;27(6):1901-7.

191.Van Wymelbeke V, Beridot-Therond ME, de La Gueronniere V, Fantino M. Influence of repeated consumption of beverages containing sucrose or intense sweeteners on food intake. Eur J Clin Nutr. 2004 Jan;58(1):154-61.

192.Palmer JR, Boggs DA, Krishnan S, Hu FB, Singer M, Rosenberg L. Sugar-sweetened beverages and incidence of type 2 diabetes mellitus in African American women. Arch Intern Med. 2008 Jul 28;168(14):1487-92.

193.Yudkin J, Eisa O. Dietary sucrose and oestradiol concentration in young men. Ann Nutr Metab. 1988 32(2):53-5.

194.Blacklock NJ. Sucrose and idiopathic renal stone. Nutr Health. 1987 5(1-2):9-17.

195.Tjaderhane L, Larmas M. A high sucrose diet decreases the mechanical strength of bones in growing rats. J Nutr. 1998 Oct;128(10):1807-10.

196.Torronen R, Sarkkinen E, Tapola N, Hautaniemi E, Kilpi K, Niskanen L. Berries modify the postprandial plasma glucose response to sucrose in healthy subjects. Br J Nutr. 2010 Apr;103(8):1094-7.

197.Moeller SM, Fryhofer SA, Osbahr AJ 3rd, Robinowitz CB; Council on Science and Public Health, American Medical Association. The effects of high fructose syrup. J Am Coll Nutr. 2009 Dec;28(6):619-26.

198.Angelopoulos TJ, Lowndes J, Zukley L, et al. The effect of high-fructose corn syrup consumption on triglycerides and uric acid. J Nutr. 2009 Jun;139(6):1242S-1245S.

199.Stanhope KL, Havel PJ. Endocrine and metabolic effects of consuming beverages sweetened with fructose, glucose, sucrose, or high-fructose corn syrup. Am J Clin Nutr. 2008 Dec;88(6):1733S-1737S.

200. Forshee RA, Storey ML, Allison DB, et al. A critical examination of the evidence relating high fructose corn syrup and weight gain. Crit Rev Food Sci Nutr. 2007 47(6):561-82.

201.Ouyang X, Cirillo P, Sautin Y, et al. Fructose consumption as a risk factor for non-alcoholic fatty liver disease. J Hepatol. 2008 Jun;48(6):993-9.

202.Willcox DC, Willcox BJ, Todoriki H, Suzuki M. The Okinawan diet: health implications of a low-calorie, nutrient-dense, antioxidant-rich dietary pattern low in glycemic load. J Am Coll Nutr. 2009 Aug;28 Suppl:500S-516S.

203.Brand-Miller J, McMillan-Price J, Steinbeck K, Caterson I. Dietary glycemic index: health implications. J Am Coll Nutr. 2009 Aug;28 Suppl:446S-449S.

 

 

 

Receba Nossa Newsletter

Basta informar seu nome e E-mail.